V10 & V20 Single Vane Pump

- Versatile
- Reliable
- High Performance
- Cost efficient
V10 & V20 Single Vane Pump

Versatile
High flow, pressure and speed capabilities enable these pumps to meet the needs of modern vehicle hydraulic circuits. Optional flow control and priority valve covers offer even more versatility.

Flow Control
The flow control cover limits flow to the operating system to the desired maximum. Excess flow is diverted to tank. On double pumps, shaft-end pump delivery is proportional to speed.

The flow control cover also includes a relief valve to limit maximum system pressure.

A typical application of a flow control is in a power steering unit where it provides a constant supply of oil over the engine’s mid to high speed range.

Priority Valve
The priority valve cover maintains nearly a constant flow to a primary circuit and diverts the remaining flow to a secondary circuit. Flow going to the secondary circuit is determined by pump delivery. The primary circuit is protected by an integral relief valve but an external relief valve must be provided for the secondary circuit.

Reliable
The superior design of these units makes them last longer ... they’ve proven they’ll hold up in rugged applications such as trenchers, backhoes and tractors.

Hydraulic Balance
Internal inlet and outlet pressure chambers are diametrically opposed.

As a result, pressure-induced radial loads are balanced ... bearings have to carry the external load only.

Performance
Low vane tip/ring loading allows high pressure operation. High speeds are possible because the inlet flow paths are designed to give uniform oil acceleration - thus better filling - particularly at low inlet pressures.

Low Cost
FluiDyne Fluid Power’s efficient design produces extra horsepower per dollar of pump investment - providing industry with low pump cost per horsepower capacity.

Single Pump Operating Specifications

<table>
<thead>
<tr>
<th>Model Series</th>
<th>Delivery USgpm</th>
<th>Displ. cm^3/r (in^3/r)</th>
<th>Max. r/min</th>
<th>Max. bar (psi)</th>
<th>Typical del. L/min (USgpm) @ max. speed & pressure</th>
<th>Typical input kW (hp) @ max. speed & pressure</th>
<th>Wt. kg (lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V10</td>
<td>3.3 (.20)</td>
<td>4800</td>
<td>172 (2500)</td>
<td>13.6 (3.6)</td>
<td>5.2 (7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6.6 (.40)</td>
<td>4500</td>
<td>172 (2500)</td>
<td>27.7 (7.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9.8 (.60)</td>
<td>4000</td>
<td>172 (2500)</td>
<td>35.6 (9.4)</td>
<td>13.3 (17.8)</td>
<td>10.1 (13.6)</td>
<td></td>
</tr>
<tr>
<td>V10(N)F</td>
<td>4</td>
<td>13.1 (.80)</td>
<td>3400</td>
<td>172 (2500)</td>
<td>41.3 (10.9)</td>
<td>15.2 (20.4)</td>
<td>4,5 - 6,8</td>
</tr>
<tr>
<td>5</td>
<td>16.4 (1.00)</td>
<td>3200</td>
<td>172 (2500)</td>
<td>48.5 (12.8)</td>
<td>17 (22.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>19.5 (1.19)</td>
<td>3000</td>
<td>152 (2200)</td>
<td>55.3 (14.6)</td>
<td>18.3 (24.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>22.8 (1.39)</td>
<td>2800</td>
<td>138 (2000)</td>
<td>60.6 (16)</td>
<td>17.9 (24)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V10P</td>
<td>6</td>
<td>19.5 (1.19)</td>
<td>3400</td>
<td>172 (2500)</td>
<td>61.0 (16.1)</td>
<td>21.6 (29)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>22.8 (1.39)</td>
<td>3000</td>
<td>172 (2500)</td>
<td>63.3 (16.7)</td>
<td>22 (29.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V20</td>
<td>8</td>
<td>26.6 (1.62)</td>
<td>2800</td>
<td>172 (2500)</td>
<td>67.1 (17.7)</td>
<td>24.2 (32.5)</td>
<td>7,3 - 8,2</td>
</tr>
<tr>
<td>V20F</td>
<td>9</td>
<td>29.7 (1.81)</td>
<td>2800</td>
<td>172 (2500)</td>
<td>75.0 (19.8)</td>
<td>26.5 (35.5)</td>
<td></td>
</tr>
<tr>
<td>V20NF</td>
<td>10</td>
<td>31.5 (1.93)</td>
<td>2500</td>
<td>172 (2500)</td>
<td>81.0 (21.4)</td>
<td>27.3 (36.6)</td>
<td></td>
</tr>
<tr>
<td>V20P</td>
<td>11</td>
<td>36.4 (2.22)</td>
<td>2500</td>
<td>172 (2500)</td>
<td>86.8 (22.9)</td>
<td>28 (37.5)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>39.0 (2.38)</td>
<td>2400</td>
<td>152 (2200)</td>
<td>87.2 (23)</td>
<td>26.8 (36)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>42.5 (2.59)</td>
<td>2400</td>
<td>152 (2200)</td>
<td>98.1 (25.9)</td>
<td>29.1 (39)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Applicable equations and start-up procedures at end of document.
Model Codes

Vane pump

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Series

- 10 or 20

Integral valve options

(Omit if not required)

- **F** – Flow control & relief
- **P** – Priority valve & relief
- **NF** – Flow control & relief w/internal drain

Mounting

- 1 – 2-bolt flange
- 6 – 2 bolt flange (SAE “B” size)

Inlet port connections

- **D** – 1 5⁄16-12 str. thd. (V20 only)
- **P** – 1" NPT thread (V10 only)
- **S** – 1 5⁄8-12 str. thd. (V10 only)
- **T** – 1 3⁄16-12 str. thd. (V10 only)

SAE rated capacity – USgpm

(1200 r/min & 100 psi)

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Outlet port connections

Code Std. cover Flow control cover Priority valve cover

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Tank</th>
<th>Primary outlet</th>
<th>Secondary outlet</th>
<th>Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2" NPT thd. (V10 only)</td>
<td></td>
<td>9/16-18 St. thd. (V10P)</td>
<td>3/4-16 St. thd. (V10P)</td>
<td>9/16-18 St. thd. (V10P)</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4" NPT thd. (V20 only)</td>
<td>3/4-16 St. thd. (V10F & V20F)</td>
<td>1/2" NPT thd. (V10F & V20F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1/16"-12 St. thd. (V10 only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1⁄4" NPT thread (V20 only)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shafts

- 1 – Straight keyed
- 3 – Threaded with woodruff key
- 11 – Splined
- 12 – Splined (V10 only)
- 38 – Splined
- 62 – SAE A Spline (V20 only)

Design

Subject to change. Installation dimensions remain the same for designs –20 through –29.

Special Suffix Feature

(Omit if not required)

Shaft Rotation

(OMIT from shaft end of pump)

- **L** – Left hand for counterclockwise.
- **R** – Right hand or (Omit)

Integral valves

Flow rate

<table>
<thead>
<tr>
<th>Flow rate</th>
<th>Relief valve setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 – 8 L/min (2 USgpm)</td>
<td>A – 17 bar (250 psi)</td>
</tr>
<tr>
<td>3 – 11 L/min (3 USgpm)</td>
<td>B – 35 bar (500 psi)</td>
</tr>
<tr>
<td>4 – 15 L/min (4 USgpm)</td>
<td>C – 52 bar (750 psi)</td>
</tr>
<tr>
<td>5 – 19 L/min (5 USgpm)</td>
<td>D – 70 bar (1000 psi)</td>
</tr>
<tr>
<td>6 – 23 L/min (6 USgpm)</td>
<td>E – 86 bar (1250 psi)</td>
</tr>
<tr>
<td>7 – 27 L/min (7 USgpm)</td>
<td>F – 100 bar (1500 psi)</td>
</tr>
<tr>
<td>8 – 30 L/min (8 USgpm)</td>
<td>G – 121 bar (1750 psi)</td>
</tr>
</tbody>
</table>

Position of outlet or primary outlet port

(Viewed from cover end of pump)

- **A** – Opposite inlet port
- **B** – 90° CCW from inlet
- **C** – In line with inlet
- **D** – 90° CW from inlet
Installation Dimensions

V10 Series
Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

<table>
<thead>
<tr>
<th>Delivery @ 1200 rpm & 100 psi</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>USgpm</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>115.6 (4.55)</td>
</tr>
<tr>
<td>2</td>
<td>115.6 (4.55)</td>
</tr>
<tr>
<td>3</td>
<td>115.6 (4.55)</td>
</tr>
<tr>
<td>4</td>
<td>121.9 (4.80)</td>
</tr>
<tr>
<td>5</td>
<td>121.9 (4.80)</td>
</tr>
<tr>
<td>6</td>
<td>127.0 (5.00)</td>
</tr>
<tr>
<td>7</td>
<td>127.0 (5.00)</td>
</tr>
</tbody>
</table>

V10F & V10NF Series
Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

<table>
<thead>
<tr>
<th>Delivery @ 1200 rpm & 100 psi</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>USgpm</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>128.8 (5.07)</td>
</tr>
<tr>
<td>2</td>
<td>128.8 (5.07)</td>
</tr>
<tr>
<td>3</td>
<td>128.8 (5.07)</td>
</tr>
<tr>
<td>4</td>
<td>135.1 (5.32)</td>
</tr>
<tr>
<td>5</td>
<td>135.1 (5.32)</td>
</tr>
<tr>
<td>6</td>
<td>140.2 (5.52)</td>
</tr>
<tr>
<td>7</td>
<td>140.2 (5.52)</td>
</tr>
</tbody>
</table>
Installation Dimensions

V10P Series
Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

<table>
<thead>
<tr>
<th>Delivery @ 1200 rpm & 100 psi</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 USgpm</td>
<td>130.0 (5.12)</td>
</tr>
<tr>
<td>2 USgpm</td>
<td>130.0 (5.12)</td>
</tr>
<tr>
<td>3 USgpm</td>
<td>130.0 (5.12)</td>
</tr>
<tr>
<td>4 USgpm</td>
<td>136.4 (5.37)</td>
</tr>
<tr>
<td>5 USgpm</td>
<td>136.4 (5.37)</td>
</tr>
<tr>
<td>6 USgpm</td>
<td>141.5 (5.57)</td>
</tr>
<tr>
<td>7 USgpm</td>
<td>141.5 (5.57)</td>
</tr>
</tbody>
</table>

V20 Series
Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

<table>
<thead>
<tr>
<th>Delivery @ 1200 rpm & 100 psi</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 USgpm</td>
<td>125.2 (4.93)</td>
</tr>
<tr>
<td>7 USgpm</td>
<td>131.6 (5.18)</td>
</tr>
<tr>
<td>8 USgpm</td>
<td>131.6 (5.18)</td>
</tr>
<tr>
<td>9 USgpm</td>
<td>131.6 (5.18)</td>
</tr>
<tr>
<td>10 USgpm</td>
<td>136.6 (5.38)</td>
</tr>
<tr>
<td>11 USgpm</td>
<td>136.6 (5.38)</td>
</tr>
<tr>
<td>12 USgpm</td>
<td>140.2 (5.52)</td>
</tr>
<tr>
<td>13 USgpm</td>
<td>140.2 (5.52)</td>
</tr>
</tbody>
</table>
Installation Dimensions

V20F, V20NF, & V20P Series
Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

<table>
<thead>
<tr>
<th>Delivery @ 1200 rpm & 100 psi</th>
<th>Dimensions A</th>
<th>Dimensions B</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 USgpm</td>
<td>149.6 (5.89)</td>
<td>125.7 (4.95)</td>
</tr>
<tr>
<td>7 USgpm</td>
<td>156.0 (6.14)</td>
<td>132.1 (5.20)</td>
</tr>
<tr>
<td>8 USgpm</td>
<td>156.0 (6.14)</td>
<td>132.1 (5.20)</td>
</tr>
<tr>
<td>9 USgpm</td>
<td>156.0 (6.14)</td>
<td>132.1 (5.20)</td>
</tr>
<tr>
<td>10 USgpm</td>
<td>161.0 (6.34)</td>
<td>136.9 (5.39)</td>
</tr>
<tr>
<td>11 USgpm</td>
<td>161.0 (6.34)</td>
<td>136.9 (5.39)</td>
</tr>
<tr>
<td>12 USgpm</td>
<td>164.3 (6.47)</td>
<td>140.5 (5.53)</td>
</tr>
<tr>
<td>13 USgpm</td>
<td>164.3 (6.47)</td>
<td>140.5 (5.53)</td>
</tr>
</tbody>
</table>

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Installation Dimensions

V20F, V20NF, & V20P Series
Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

<table>
<thead>
<tr>
<th>Delivery @ 1200 rpm & 100 psi</th>
<th>Dimensions A</th>
<th>Dimensions B</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 USgpm</td>
<td>149.6 (5.89)</td>
<td>125.7 (4.95)</td>
</tr>
<tr>
<td>7 USgpm</td>
<td>156.0 (6.14)</td>
<td>132.1 (5.20)</td>
</tr>
<tr>
<td>8 USgpm</td>
<td>156.0 (6.14)</td>
<td>132.1 (5.20)</td>
</tr>
<tr>
<td>9 USgpm</td>
<td>156.0 (6.14)</td>
<td>132.1 (5.20)</td>
</tr>
<tr>
<td>10 USgpm</td>
<td>161.0 (6.34)</td>
<td>136.9 (5.39)</td>
</tr>
<tr>
<td>11 USgpm</td>
<td>161.0 (6.34)</td>
<td>136.9 (5.39)</td>
</tr>
<tr>
<td>12 USgpm</td>
<td>164.3 (6.47)</td>
<td>140.5 (5.53)</td>
</tr>
<tr>
<td>13 USgpm</td>
<td>164.3 (6.47)</td>
<td>140.5 (5.53)</td>
</tr>
</tbody>
</table>

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.

Dimensions in millimeters (inches).
Additional shaft options shown on page 7.
Optional Shafts

V10 Series
Dimensions in millimeters (inches)
Note: No. 1 keyed shaft and No. 38 splined shaft shown on page 4.

V20 Series
Dimensions in millimeters (inches)
Note: No. 1 keyed shaft and No. 38 splined shaft shown on pages 5 and 6 respectively. No. 62 splined shaft same as V10 #11 shaft shown above.

No. 3 shaft extension

No. 11 & 12 shaft extension

No. 3 shaft extension

No. 11 shaft extension

NOTE:
No. 3 shaft recommended nut torque 170 Nm (125 lb. ft.)
Typical Performance

V10 Single Pumps

Performance Constants:
- Oil temp. 49°C (120°F), viscosity 32 cSt (150 SSU) @ 38°C (100°F), inlet pressure zero
Typical Performance

V20 Single Pumps

Performance Constants:
Oil temp. 49°C (120°F), viscosity
32 cSt (150 SSU) @ 38°C (100°F),
inlet pressure zero

- 7 & 13 GPM RINGS
- 9 & 11 GPM RINGS

Graphs showing delivery in l/min (USgal/min) vs. speed in r/min for different pressure codes.
Typical Performance

V20 Single Pumps

Performance Constants:
Oil temp. 49°C (120°F), viscosity 32 cSt (150 SSU) @ 38°C (100°F), inlet pressure zero

Graph 1:
- **Bar Pressure (PSI)** vs **DELIVERY (l/min USgpm)**
- **6, 8 & 12 GPM RINGS**

Graph 2:
- **Bar Pressure (PSI)** vs **INPUT HORSEPOWER (kW HP)**
- **6, 8 & 12 GPM RINGS**
Priority Valve Models

V10P Single Pumps

V20P Single Pumps

NOTE: 12 & 13 RINGS ARE RATED AT 150 BAR (2200 PSI)

TOTAL PUMP DELIVERY – l/min (USgpm)

CONTROLLED FLOW TO PRIORITY CIRCUIT – l/min (USgpm)

NO. 6 ORIFICE

NO. 3 ORIFICE

NO. 1 ORIFICE

NO. 4 ORIFICE

NO. 2 ORIFICE

NO. 8 ORIFICE
Typical Performance

Flow Control Models

V10(N)F & V20(N)F Single Pumps

Speed Correction Curves

V10 &V20 Single Pumps

Maximum operating speeds shown on performance curves are for pumps operating at 0 psi inlet condition. To compute maximum operating speeds at other inlet conditions, use appropriate speed rating correction factor.

Example:
Max. speed @ 0 psi inlet 2700 r/min
Correction factor @ 5 in. Hg x .93
Max. speed @ 5 in. Hg inlet 2511 r/min

Pump inlet suction should not exceed 5 in. Hg vacuum. Positive pressure on inlet should not exceed 0.7 bar (10 psi).
Oil Recommendations

The oil in a hydraulic system serves as the power transmission medium. It is also the system’s lubricant and coolant. Selection of the proper oil is a requirement for satisfactory system performance and life.

The following recommendations will assist in the selection of suitable oils for use with FluiDyne products. FluiDyne does not publish a recommended oil list by brand name or supplier due to the extremely wide variety of oil types on the market.

In most cases, use of these recommendations will lead to selection of a suitable oil. However, due to the complex nature of oil formulation, the variety of oils available and peculiarities of individual hydraulic applications, there will be rare instances where oil selected on the basis of these recommendations will yield unsatisfactory results. FluiDyne cannot be responsible for such exceptions. In this respect, the customer is encouraged to consult his FluiDyne representative when selecting an oil.

Important Factors In Selecting An Oil

Additives –

Hydraulic fluids contain a number of additive agents which materially improve various characteristics of oil for hydraulic systems. These additives are selected to reduce wear, increase chemical stability, inhibit corrosion and depress the pour point.

Pump performance and reliability are directly affected by the antiwear additive formulation contained in the oil. Oils providing a high level of antiwear protection are recommended for optimum performance and long life.

Viscosity –

Viscosity is the measure of fluidity. The oil selected must have proper viscosity to maintain an adequate lubricating film at system operating temperature.

In addition to dynamic lubricating properties, oil must have sufficient body to provide an adequate sealing effect between working parts of pumps, valves, cylinders and motors, but not enough to cause pump cavitation or sluggish valve action.

Optimum operating viscosity of the oil should be between 16 cSt (80 SUS) and 40 cSt (180 SUS).

“Viscosity index” reflects the way viscosity changes with temperature; the smaller the viscosity change, the higher the viscosity index. The viscosity index of hydraulic system oil should not be less than 90. Multiple viscosity oils, such as SAE 10W30, incorporate additives to improve viscosity index (polymer thickened). Oils of this type generally exhibit both a temporary and permanent decrease in viscosity due to oil shear encountered in the operating hydraulic system. The actual viscosity can, therefore, be far less in the operating hydraulic system than what is shown in normal oil data. Accordingly, when such oils are selected, it is necessary to use those with high shear stability to ensure that viscosity remains within recommended limits while in service.

Chemical Stability –

Oxidative and thermal stability are essential characteristics of oils for Mobile hydraulic systems. The combination of base stocks and additives should be stable during the expected lifetime of the oil when exposed to the environment of these systems.

Suitable Types Of Oil

Crankcase Oil –

Crankcase oil having letter designation SC, SD, SE or SF per SAE J183 FEB80. Note that one oil may meet one or more of these designations.

Antiwear Hydraulic Oil –

These are produced by all major oil suppliers and should consist of good quality base stocks compounded with antiwear, anti-oxidation, and antitrust additives.

Due to the large number of different antiwear hydraulic oils, it is impossible for FluiDyne to test its products with all of them and recommend those that are suitable. Because of this, an evaluation procedure was developed for fluid suppliers to establish the suitability of their products for use in FluiDyne components. Publication M-2952-S, “Pump Test Procedure for Evaluation of Antiwear Hydraulic Fluids for Mobile Systems,” which gives the details of this test procedure, is available on request.

Certain Other Types Of Petroleum Oil –

Other oils are suitable if they meet the following provisions:

1. Contain the type and content of antiwear additives found in the above designated crankcase oils, and have passed the pump tests as given in M-2952-S.

2. Have sufficient chemical stability for Mobile Hydraulic system service.

3. Meet the viscosity recommendations shown in the following tables.

Oil Viscosity Recommendations

Crankcase Oils –

<table>
<thead>
<tr>
<th>Hydraulic System Operating Temp. Range*</th>
<th>SAE Viscosity Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>–23°C to 54°C (-10°F to 130°F)</td>
<td>5W, 5W-20, 5W-30</td>
</tr>
<tr>
<td>–18°C to 83°C (0°F to 180°F)</td>
<td>10W</td>
</tr>
<tr>
<td>–18°C to 99°C (0°F to 210°F)</td>
<td>10W-30, 10W-40</td>
</tr>
<tr>
<td>–10°C to 99°C (14°F to 210°F)</td>
<td>20-20W</td>
</tr>
</tbody>
</table>

Antiwear Hydraulic Oils

<table>
<thead>
<tr>
<th>Hydraulic System Operating Temp. Range*</th>
<th>ISO Viscosity Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>–21°C to 60°C (-5°F to 140°F)</td>
<td>22</td>
</tr>
<tr>
<td>–15°C to 77°C (5°F to 170°F)</td>
<td>32</td>
</tr>
<tr>
<td>–9°C to 88°C (15°F to 190°F)</td>
<td>46</td>
</tr>
<tr>
<td>–1°C to 99°C (30°F to 210°F)</td>
<td>68</td>
</tr>
</tbody>
</table>

* Temperatures shown are cold (ambient) start-up to maximum operating. During cold start-up, avoid high-speed operation of hydraulic components until the system is warmed up to provide adequate lubrication.